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The Wright brothers invented the first practical airplane in the first decade
of the twentieth century. Along with this came the rise of aeronautical
engineering as an exciting, new, distinct discipline. College courses in

aeronautical engineering were offered as early as 1914 at the University of
Michigan and at MIT. Michigan was the first university to establish an aero-
nautics department with a four-year degree-granting program in 1916; by 1926 it
had graduated over one hundred students. The need for substantive textbooks in
various areas of aeronautical engineering became critical. Rising to this demand,
McGraw-Hill became one of the first publishers of aeronautical engineering text-
books, starting with Airplane Design and Construction by Ottorino Pomilio in
1919, and the classic and definitive text Airplane Design: Aerodynamics by the
iconic Edward P. Warner in 1927. Warner’s book was a watershed in aeronautical
engineering textbooks.

Since then, McGraw-Hill has become the time-honored publisher of books in
aeronautical engineering. With the advent of high-speed flight after World War II
and the space program in 1957, aeronautical and aerospace engineering grew
to new heights. There was, however, a hiatus that occurred in the 1970s when
aerospace engineering went through a transition, and virtually no new books in
the field were published for almost a decade by anybody. McGraw-Hill broke
this hiatus with the foresight of its Chief Engineering Editor, B.J. Clark, who
was instrumental in the publication of Introduction to Flight by John Anderson.
First published in 1978, Introduction to Flight is now in its 8th edition. Clark’s
bold decision was followed by McGraw-Hill riding the crest of a new wave of
students and activity in aerospace engineering, and it opened the flood-gates for
new textbooks in the field.

In 1988, McGraw-Hill initiated its formal series in Aeronautical and
Aerospace Engineering, gathering together under one roof all its existing texts
in the field, and soliciting new manuscripts. This author is proud to have been
made the consulting editor for this series, and to have contributed some of the
titles. Starting with eight books in 1988, the series now embraces 24 books cov-
ering a broad range of discipline in the field. With this, McGraw-Hill continues
its tradition, started in 1919, as the premier publisher of important textbooks in
aeronautical and aerospace engineering.
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PREFACE TO THE SIXTH EDITION

This book follows in the same tradition as the previous editions: it is for
students—to be read, understood, and enjoyed. It is consciously written in
a clear, informal, and direct style to talk to the reader and gain his or her

immediate interest in the challenging and yet beautiful discipline of aerodynamics.
The explanation of each topic is carefully constructed to make sense to the reader.
Moreover, the structure of each chapter is highly organized in order to keep
the reader aware of where we are, where we were, and where we are going.
Too frequently the student of aerodynamics loses sight of what is trying to be
accomplished; to avoid this, I attempt to keep the reader informed of my intent
at all times. For example, preview boxes are introduced at the beginning of each
chapter. These short sections, literally set in boxes, inform the reader in plain
language what to expect from each chapter and why the material is important and
exciting. They are primarily motivational; they help to encourage the reader to
actually enjoy reading the chapter, therefore enhancing the educational process.
In addition, each chapter contains a road map—a block diagram designed to
keep the reader well aware of the proper flow of ideas and concepts. The use of
preview boxes and chapter road maps are unique features of this book. Also, to
help organize the reader’s thoughts, there are special summary sections at the end
of most chapters.

The material in this book is at the level of college juniors and seniors in
aerospace or mechanical engineering. It assumes no prior knowledge of fluid
dynamics in general, or aerodynamics in particular. It does assume a familiarity
with differential and integral calculus, as well as the usual physics background
common to most students of science and engineering. Also, the language of
vector analysis is used liberally; a compact review of the necessary elements
of vector algebra and vector calculus is given in Chapter 2 in such a fashion
that it can either educate or refresh the reader, whatever may be the case for
each individual.

This book is designed for a one-year course in aerodynamics. Chapters 1 to 6
constitute a solid semester emphasizing inviscid, incompressible flow. Chapters 7
to 14 occupy a second semester dealing with inviscid, compressible flow. Finally,
Chapters 15 to 20 introduce some basic elements of viscous flow, mainly to serve
as a contrast to and comparison with the inviscid flows treated throughout the bulk
of the text. Specific sections on viscous flow, however, have been added much
earlier in the book in order to give the reader some idea of how the inviscid results
are tempered by the influence of friction. This is done by adding self-contained
viscous flow sections at the end of various chapters, written and placed in such a
way that they do not interfere with the flow of the inviscid flow discussion, but
are there to complement the discussion. For example, at the end of Chapter 4 on

xv
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incompressible inviscid flow over airfoils, there is a viscous flow section that deals
with the prediction of skin friction drag on such airfoils. A similar viscous flow
section at the end of Chapter 12 deals with friction drag on high-speed airfoils.
At the end of the chapters on shock waves and nozzle flows, there are viscous
flow sections on shock wave/boundary-layer interactions. And so forth.

Other features of this book are:

1. An introduction to computational fluid dynamics as an integral part of the
study of aerodynamics. Computational fluid dynamics (CFD) has recently
become a third dimension in aerodynamics, complementing the previously
existing dimension of pure experiment and pure theory. It is absolutely
necessary that the modern student of aerodynamics be introduced to some
of the basic ideas of CFD—he or she will most certainly come face to face
with either its “machinery” or its results after entering the professional
ranks of practicing aerodynamicists. Hence, such subjects as the source and
vortex panel techniques, the method of characteristics, and explicit
finite-difference solutions are introduced and discussed as they naturally
arise during the course of our discussion. In particular, Chapter 13 is
devoted exclusively to numerical techniques, couched at a level suitable to
an introductory aerodynamics text.

2. A chapter is devoted entirely to hypersonic flow. Although hypersonics is at
one extreme end of the flight spectrum, it has current important applications
to the design of hypervelocity missiles, planetary entry vehicles, and
modern hypersonic atmospheric cruise vehicles. Therefore, hypersonic flow
deserves some attention in any modern presentation of aerodynamics. This
is the purpose of Chapter 14.

3. Historical notes are placed at the end of many of the chapters. This follows
in the tradition of some of my previous textbooks, Introduction to Flight: Its
Engineering and History, 8th Edition (McGraw-Hill, 2016) and Modern
Compressible Flow: With Historical Perspecive, 3rd Edition (McGraw-Hill,
2003). Although aerodynamics is a rapidly evolving subject, its foundations
are deeply rooted in the history of science and technology. It is important
for the modern student of aerodynamics to have an appreciation for the
historical origin of the tools of the trade. Therefore, this book addresses
such questions as who Bernoulli, Euler, d’Alembert, Kutta, Joukowski, and
Prandtl were; how the circulation theory of lift developed; and what
excitement surrounded the early development of high-speed aerodynamics.
I wish to thank various members of the staff of the National Air and Space
Museum of the Smithsonian Institution for opening their extensive files for
some of the historical research behind these history sections. Also, a
constant biographical reference was the Dictionary of Scientific Biography,
edited by C. C. Gillespie, Charles Schribner’s Sons, New York, 1980. This
is a 16-volume set of books that is a valuable source of biographic
information on the leading scientists in history.
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4. Design boxes are scattered throughout the book. These design boxes are
special sections for the purpose of discussing design aspects associated with
the fundamental material covered throughout the book. These sections are
literally placed in boxes to set them apart from the mainline text. Modern
engineering education is placing more emphasis on design, and the design
boxes in this book are in this spirit. They are a means of making the
fundamental material more relevant and making the whole process of
learning aerodynamics more fun.

Due to the extremely favorable comments from readers and users of the first
five editions, virtually all the content of the earlier editions has been carried over
intact to the present sixth edition. In this edition, however, a completely new edu-
cational tool has been introduced in some of the chapters in order to enhance and
expand the reader’s learning process. Throughout the previous editions, numer-
ous worked examples have been included at the end of many of the sections to
illustrate and reinforce the ideas and methods discussed in that particular section.
These are still included in the present sixth edition. However, added at the end of
a number of the chapters in this sixth edition, a major challenge is given to the
reader that integrates and uses thoughts and equations drawn from the chapter
as a whole. These new sections are called END OF CHAPTER INTEGRATED
WORK CHALLENGES. They are listed next:

1. Chapter 1: A forward-facing axial aerodynamic force on an airfoil sounds
not possible, but it can actually happen. What are the conditions under
which it can happen?
Also, the history of when such a forward-facing force was first observed is
discussed.

2. Chapter 2: Using the momentum equation, develop the relation between
drag on an aerodynamic body and the loss of total pressure in the flow field.

3. Chapter 3: Perform a conceptual design of a low-speed subsonic wind
tunnel.

4. Chapter 4: Find a way to account for the effects of wind tunnel walls on the
measurements made on an aerodynamic body in a low-speed wind tunnel.

5. Chapter 7: Obtain and discuss a relation between supersonic wave drag on
a body and the entropy increase in the flow.

6. Chapter 9: Consider the sonic boom generated from a body in supersonic
flight. What is it? How is it created? How can its strength be reduced?

7. Chapter 10: Perform a conceptual design of a supersonic wind tunnel.
8. Chapter 11: At the end of World War II, in the face of the lack of reliable

transonic wind tunnels and the extreme theoretical difficulty solving the
nonlinear mathematical equations that govern transonic flow, the NACA
developed an innovative experimental method for obtaining transonic
aerodynamic data. Called the “wing-flow technique,” it involved mounting
a small airfoil wing model vertically on the surface of the wing of a P-51
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fighter airplane at a location inside the bubble of locally supersonic flow
formed on the P-51 wing when the airplane exceeded its critical Mach
number. Design this apparatus, taking into account the size of the test
model, the flow conditions over the test model, the optimum locations on the
P-51 wing, etc. Also, the history of the wing-flow techniques will be given.

The answers to these Integrated Work Challenges are given right there in the
text so that the reader can gain instant gratification after working them out, just
like the other worked examples; the answers are just more complex with a more
widespread educational value.

New homework problems have been added to McGraw-Hill’s online learning
environment, Connect®. These question banks will include all end-of-chapter
problems from the textbook and additional problems unique to Connect.

All the new additional material not withstanding, the main thrust of this book
remains the presentation of the fundamentals of aerodynamics; the new material
is simply intended to enhance and support this thrust. I repeat that the book is
organized along classical lines, dealing with inviscid incompressible flow, inviscid
compressible flow, and viscous flow in sequence. My experience in teaching this
material to undergraduates finds that it nicely divides into a two-semester course
with Parts 1 and 2 in the first semester and Parts 3 and 4 in the second semester.
Also, I have taught the entire book in a fast-paced, first-semester graduate course
intended to introduce the fundamentals of aerodynamics to new graduate students
who have not had this material as part of their undergraduate education. The book
works well in such a mode.

I would like to thank the McGraw-Hill editorial and production staff for their
excellent help in producing this book, especially Jolynn Kilburg and Thomas
Scaife, PhD, in Dubuque. Our photo researcher, David Tietz, was invaluable
in searching out new and replacement photographs for the new edition to sat-
isfy new McGraw-Hill guidelines; I don’t know what I would have done with-
out him. Also, special thanks go to my long-time friend and associate, Sue
Cunningham, whose expertise as a scientific typist is beyond comparison and
who has typed all my book manuscripts for me, including this one, with great care
and precision.

I want to thank my students over the years for many stimulating discussions on
the subject of aerodynamics, discussions that have influenced the development of
this book. Special thanks go to three institutions: (1) The University of Maryland
for providing a challenging intellectual atmosphere in which I have basked for
the past 42 years; (2) The National Air and Space Museum of the Smithsonian
Institution for opening the world of the history of the technology of flight for me;
and (3) the Anderson household—Sarah-Allen, Katherine, and Elizabeth—who
have been patient and understanding over the years while their husband and father
was in his ivory tower. Also, I pay respect to the new generation, which includes
my two beautiful granddaughters, Keegan and Tierney Glabus, who represent the
future. To them, I dedicate this book.
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As a final comment, aerodynamics is a subject of intellectual beauty, com-
posed and drawn by many great minds over the centuries. Fundamentals of Aero-
dynamics is intended to portray and convey this beauty. Do you feel challenged
and interested by these thoughts? If so, then read on, and enjoy!

John D. Anderson, Jr.









P A R T 1
Fundamental Principles

In Part 1, we cover some of the basic principles that apply to aerodynamics in
general. These are the pillars on which all of aerodynamics is based.

1





C H A P T E R 1
Aerodynamics: Some
Introductory Thoughts

The term “aerodynamics” is generally used for problems arising from flight and
other topics involving the flow of air.

Ludwig Prandtl, 1949

Aerodynamics: The dynamics of gases, especially atmospheric interactions with
moving objects.

The American Heritage
Dictionary of the English
Language, 1969

PREVIEW BOX

Why learn about aerodynamics? For an answer, just
take a look at the following five photographs showing
a progression of airplanes over the past 70 years. The
Douglas DC-3 (Figure 1.1), one of the most famous
aircraft of all time, is a low-speed subsonic trans-
port designed during the 1930s. Without a knowl-
edge of low-speed aerodynamics, this aircraft would
have never existed. The Boeing 707 (Figure 1.2)
opened high-speed subsonic flight to millions of pas-
sengers beginning in the late 1950s. Without a knowl-
edge of high-speed subsonic aerodynamics, most of
us would still be relegated to ground transportation. Figure 1.1 Douglas DC-3 (NASA).

3
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Figure 1.2 Boeing 707 (© Everett Collection
Historical/Alamy).

Figure 1.3 Bell X-1 (Library of Congress
[LC-USZ6-1658]).

Figure 1.4 Lockheed F-104 (Library of Congress
[LC-USZ62-94416]).

The Bell X-1 (Figure 1.3) became the first piloted air-
plane to fly faster than sound, a feat accomplished
with Captain Chuck Yeager at the controls on Oc-
tober 14, 1947. Without a knowledge of transonic
aerodynamics (near, at, and just above the speed of
sound), neither the X-1, nor any other airplane, would
have ever broken the sound barrier. The Lockheed
F-104 (Figure 1.4) was the first supersonic airplane

Figure 1.5 Lockheed-Martin F-22 (U.S. Air Force
Photo/Staff Sgt. Vernon Young Jr.).

Figure 1.6 Blended wing body (NASA).

point-designed to fly at twice the speed of sound,
accomplished in the 1950s. The Lockheed-Martin
F-22 (Figure 1.5) is a modern fighter aircraft designed
for sustained supersonic flight. Without a knowledge
of supersonic aerodynamics, these supersonic air-
planes would not exist. Finally, an example of an
innovative new vehicle concept for high-speed sub-
sonic flight is the blended wing body shown in Figure
1.6. At the time of writing, the blended-wing-body
promises to carry from 400 to 800 passengers over
long distances with almost 30 percent less fuel per
seat-mile than a conventional jet transport. This would
be a “renaissance” in long-haul transport. The salient
design aspects of this exciting new concept are dis-
cussed in Section 11.10. The airplanes in Figures 1.1–
1.6 are six good reasons to learn about aerodynamics.
The major purpose of this book is to help you do this.
As you continue to read this and subsequent chapters,
you will progressively learn about low-speed aerody-
namics, high-speed subsonic aerodynamics, transonic
aerodynamics, supersonic aerodynamics, and more.
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Airplanes are by no means the only application
of aerodynamics. The air flow over an automobile,
the gas flow through the internal combustion engine
powering an automobile, weather and storm predic-
tion, the flow through a windmill, the production of
thrust by gas turbine jet engines and rocket engines,
and the movement of air through building heater and
air-conditioning systems are just a few other exam-
ples of the application of aerodynamics. The material
in this book is powerful stuff—important stuff. Have
fun reading and learning about aerodynamics.

To learn a new subject, you simply have to start
at the beginning. This chapter is the beginning of our
study of aerodynamics; it weaves together a series
of introductory thoughts, definitions, and concepts
essential to our discussions in subsequent chapters.
For example, how does nature reach out and grab
hold of an airplane in flight—or any other object

emmersed in a flowing fluid—and exert an aerody-
namic force on the object? We will find out here. The
resultant aerodynamic force is frequently resolved
into two components defined as lift and drag; but
rather than dealing with the lift and drag forces them-
selves, aerodynamicists deal instead with lift and drag
coefficients. What is so magic about lift and drag
coefficients? We will see. What is a Reynolds number?
Mach number? Inviscid flow? Viscous flow? These
rather mysterious sounding terms will be demystified
in the present chapter. They and others constitute the
language of aerodynamics, and as we all know, to
do anything useful you have to know the language.
Visualize this chapter as a beginning language lesson,
necessary to go on to the exciting aerodynamic appli-
cations in later chapters. There is a certain enjoyment
and satisfaction in learning a new language. Take this
chapter in that spirit, and move on.

1.1 IMPORTANCE OF AERODYNAMICS:
HISTORICAL EXAMPLES

On August 8, 1588, the waters of the English Channel churned with the gyrations
of hundreds of warships. The great Spanish Armada had arrived to carry out an
invasion of Elizabethan England and was met head-on by the English fleet under
the command of Sir Francis Drake. The Spanish ships were large and heavy;
they were packed with soldiers and carried formidable cannons that fired 50 lb
round shot that could devastate any ship of that era. In contrast, the English
ships were smaller and lighter; they carried no soldiers and were armed with
lighter, shorter-range cannons. The balance of power in Europe hinged on the
outcome of this naval encounter. King Philip II of Catholic Spain was attempting
to squash Protestant England’s rising influence in the political and religious affairs
of Europe; in turn, Queen Elizabeth I was attempting to defend the very existence
of England as a sovereign state. In fact, on that crucial day in 1588, when the
English floated six fire ships into the Spanish formation and then drove headlong
into the ensuing confusion, the future history of Europe was in the balance.
In the final outcome, the heavier, sluggish, Spanish ships were no match for the
faster, more maneuverable, English craft, and by that evening the Spanish Armada
lay in disarray, no longer a threat to England. This naval battle is of particular
importance because it was the first in history to be fought by ships on both sides
powered completely by sail (in contrast to earlier combinations of oars and sail),
and it taught the world that political power was going to be synonymous with
naval power. In turn, naval power was going to depend greatly on the speed and
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Figure 1.7 Isaac Newton’s model of fluid flow in the year 1687. This
model was widely adopted in the seventeenth and eighteenth centuries
but was later found to be conceptually inaccurate for most fluid flows.

maneuverability of ships. To increase the speed of a ship, it is important to reduce
the resistance created by the water flow around the ship’s hull. Suddenly, the
drag on ship hulls became an engineering problem of great interest, thus giving
impetus to the study of fluid mechanics.

This impetus hit its stride almost a century later, when, in 1687, Isaac Newton
(1642–1727) published his famous Principia, in which the entire second book
was devoted to fluid mechanics. Newton encountered the same difficulty as others
before him, namely, that the analysis of fluid flow is conceptually more difficult
than the dynamics of solid bodies. A solid body is usually geometrically well
defined, and its motion is therefore relatively easy to describe. On the other
hand, a fluid is a “squishy” substance, and in Newton’s time it was difficult to
decide even how to qualitatively model its motion, let alone obtain quantitative
relationships. Newton considered a fluid flow as a uniform, rectilinear stream
of particles, much like a cloud of pellets from a shotgun blast. As sketched in
Figure 1.7, Newton assumed that upon striking a surface inclined at an angle θ

to the stream, the particles would transfer their normal momentum to the surface
but their tangential momentum would be preserved. Hence, after collision with
the surface, the particles would then move along the surface. This led to an
expression for the hydrodynamic force on the surface which varies as sin2 θ . This
is Newton’s famous sine-squared law (described in detail in Chapter 14). Although
its accuracy left much to be desired, its simplicity led to wide application in naval
architecture. Later, in 1777, a series of experiments was carried out by Jean
LeRond d’Alembert (1717–1783), under the support of the French government,
in order to measure the resistance of ships in canals. The results showed that “the
rule that for oblique planes resistance varies with the sine square of the angle of
incidence holds good only for angles between 50 and 90◦ and must be abandoned
for lesser angles.” Also, in 1781, Leonhard Euler (1707–1783) pointed out the
physical inconsistency of Newton’s model (Figure 1.7) consisting of a rectilinear
stream of particles impacting without warning on a surface. In contrast to this
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model, Euler noted that the fluid moving toward a body “before reaching the latter,
bends its direction and its velocity so that when it reaches the body it flows past
it along the surface, and exercises no other force on the body except the pressure
corresponding to the single points of contact.” Euler went on to present a formula
for resistance that attempted to take into account the shear stress distribution
along the surface, as well as the pressure distribution. This expression became
proportional to sin2 θ for large incidence angles, whereas it was proportional to
sin θ at small incidence angles. Euler noted that such a variation was in reasonable
agreement with the ship-hull experiments carried out by d’Alembert.

This early work in fluid dynamics has now been superseded by modern con-
cepts and techniques. (However, amazingly enough, Newton’s sine-squared law
has found new application in very high-speed aerodynamics, to be discussed in
Chapter 14.) The major point here is that the rapid rise in the importance of
naval architecture after the sixteenth century made fluid dynamics an important
science, occupying the minds of Newton, d’Alembert, and Euler, among many
others. Today, the modern ideas of fluid dynamics, presented in this book, are still
driven in part by the importance of reducing hull drag on ships.

Consider a second historical example. The scene shifts to Kill Devil Hills,
4 mi south of Kitty Hawk, North Carolina. It is summer of 1901, and Wilbur
and Orville Wright are struggling with their second major glider design, the first
being a stunning failure the previous year. The airfoil shape and wing design of
their glider are based on aerodynamic data published in the 1890s by the great
German aviation pioneer Otto Lilienthal (1848–1896) and by Samuel Pierpont
Langley (1934–1906), secretary of the Smithsonian Institution—the most presti-
gious scientific position in the United States at that time. Because their first glider
in 1900 produced no meaningful lift, the Wright brothers have increased the wing
area from 165 to 290 ft2 and have increased the wing camber (a measure of the
airfoil curvature—the larger the camber, the more “arched” is the thin airfoil
shape) by almost a factor of 2. But something is still wrong. In Wilbur’s words,
the glider’s “lifting capacity seemed scarcely one-third of the calculated amount.”
Frustration sets in. The glider is not performing even close to their expectations,
although it is designed on the basis of the best available aerodynamic data. On
August 20, the Wright brothers despairingly pack themselves aboard a train going
back to Dayton, Ohio. On the ride back, Wilbur mutters that “nobody will fly for
a thousand years.” However, one of the hallmarks of the Wrights is perseverance,
and within weeks of returning to Dayton, they decide on a complete departure
from their previous approach. Wilbur later wrote that “having set out with abso-
lute faith in the existing scientific data, we were driven to doubt one thing after
another, until finally after two years of experiment, we cast it all aside, and de-
cided to rely entirely upon our own investigations.” Since their 1901 glider was
of poor aerodynamic design, the Wrights set about determining what constitutes
good aerodynamic design. In the fall of 1901, they design and build a 6 ft long,
16 in square wind tunnel powered by a two-bladed fan connected to a gasoline
engine. A replica of the Wrights’ tunnel is shown in Figure 1.8a. In their wind
tunnel they test over 200 different wing and airfoil shapes, including flat plates,
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(a)

(b)

Figure 1.8 (a) Replica of the wind tunnel designed, built,
and used by the Wright brothers in Dayton, Ohio, during
1901–1902. (b) Wing models tested by the Wright brothers
in their wind tunnel during 1901–1902. ((a) NASA;
(b) Courtesy of John Anderson).

curved plates, rounded leading edges, rectangular and curved planforms, and var-
ious monoplane and multiplane configurations. A sample of their test models is
shown in Figure 1.8b. The aerodynamic data are taken logically and carefully.
Armed with their new aerodynamic information, the Wrights design a new glider
in the spring of 1902. The airfoil is much more efficient; the camber is reduced
considerably, and the location of the maximum rise of the airfoil is moved closer
to the front of the wing. The most obvious change, however, is that the ratio of
the length of the wing (wingspan) to the distance from the front to the rear of the
airfoil (chord length) is increased from 3 to 6. The success of this glider during
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the summer and fall of 1902 is astounding; Orville and Wilbur accumulate over a
thousand flights during this period. In contrast to the previous year, the Wrights
return to Dayton flushed with success and devote all their subsequent efforts to
powered flight. The rest is history.

The major point here is that good aerodynamics was vital to the ultimate
success of the Wright brothers and, of course, to all subsequent successful airplane
designs up to the present day. The importance of aerodynamics to successful
manned flight goes without saying, and a major thrust of this book is to present
the aerodynamic fundamentals that govern such flight.

Consider a third historical example of the importance of aerodynamics, this
time as it relates to rockets and space flight. High-speed, supersonic flight had
become a dominant feature of aerodynamics by the end of World War II. By this
time, aerodynamicists appreciated the advantages of using slender, pointed body
shapes to reduce the drag of supersonic vehicles. The more pointed and slender
the body, the weaker the shock wave attached to the nose, and hence the smaller
the wave drag. Consequently, the German V-2 rocket used during the last stages
of World War II had a pointed nose, and all short-range rocket vehicles flown
during the next decade followed suit. Then, in 1953, the first hydrogen bomb
was exploded by the United States. This immediately spurred the development
of long-range intercontinental ballistic missiles (ICBMs) to deliver such bombs.
These vehicles were designed to fly outside the region of the earth’s atmosphere
for distances of 5000 mi or more and to reenter the atmosphere at suborbital speeds
of from 20,000 to 22,000 ft/s. At such high velocities, the aerodynamic heating of
the reentry vehicle becomes severe, and this heating problem dominated the minds
of high-speed aerodynamicists. Their first thinking was conventional—a sharp-
pointed, slender reentry body. Efforts to minimize aerodynamic heating centered
on the maintenance of laminar boundary layer flow on the vehicle’s surface;
such laminar flow produces far less heating than turbulent flow (discussed in
Chapters 15 and 19). However, nature much prefers turbulent flow, and reentry
vehicles are no exception. Therefore, the pointed-nose reentry body was doomed
to failure because it would burn up in the atmosphere before reaching the earth’s
surface.

However, in 1951, one of those major breakthroughs that come very infre-
quently in engineering was created by H. Julian Allen at the NACA (National
Advisory Committee for Aeronautics) Ames Aeronautical Laboratory—he in-
troduced the concept of the blunt reentry body. His thinking was paced by the
following concepts. At the beginning of reentry, near the outer edge of the atmo-
sphere, the vehicle has a large amount of kinetic energy due to its high velocity
and a large amount of potential energy due to its high altitude. However, by the
time the vehicle reaches the surface of the earth, its velocity is relatively small and
its altitude is zero; hence, it has virtually no kinetic or potential energy. Where
has all the energy gone? The answer is that it has gone into (1) heating the body
and (2) heating the airflow around the body. This is illustrated in Figure 1.9. Here,
the shock wave from the nose of the vehicle heats the airflow around the vehicle;
at the same time, the vehicle is heated by the intense frictional dissipation within
the boundary layer on the surface. Allen reasoned that if more of the total reentry




